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Corollary 3. It is clear from the proof that, when k is 
tains no logarithms. 

odd, the formal solution con- 

The author thanks V.V. Kozlov for suggesting the problem and for his help. 
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AN ASYMPTOTIC ANALYSIS OF THE FORCED OSCILLATIONS IN SYSTEMS WITH 
SLOWLY VARYING PARAMETERS* 

M.B. EPENDIYEV 

The oscillations in weakly non-linear systems with slowly varying 
parameters are investigated. For periodically varying parameters, a 
spectral analysis is made of the steady-state oscillations in order to 
obtain reasonably simple analytical results. Special attention is paid 
to the cases when some natural frequencies vary over a much wider range 
than the frequency of parameter variation. 

The usual basic methods for analysing such problems /l-3/ are not 
suitable of the present purpose, especially when the parameters vary 
over a wide range. A rather different scheme for analysing the system 
of differential equations is proposed below. The matrizant (Green's 
function) of the linear problem is written in a form which ensures 
faster convergence than in the WKB method and of the procedure for the 
asymptotic evaluation of the required quantities /l, 2/. Even to a 
first approximation, the results differ from those of /I, 21, and differ 
the more, the greater the range of variation of the parameters. The 
non-linear forces are taken into account by successive approximation 
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with partial linearization at each step. The slowly varying coefficients 
of the linearized part correct the parameters of the linear operator 
and are functionals of the relevant approximate solution. In some 
cases, this functional problem can be reduced to an ordinary equation 
in several unknowns. A one-dimensional oscillatory system is studied 
in more detail in this context, with periodically varying rigidity and 
cubic non-linearity, under the action of a single-frequency force 
excitation. 

1. The Linear approximation. Consider the equation 

(1.1) 

i 

1, k--n 
o<t< T, k, n = 1,2, . . ., W, 6,, = 0, k+a 

Here and throughout, we understand summation over repeated Latin subscripts, running 
from 1 to N. The matrices R and U are positive definite and symmetric (though this is not 
essential for the essence of the method), while the functions &1, (t)? Unk (t)? mk (t) > % > 0, 

which will often be denoted by C 01, are differentiable a sufficient number of times (i.e., 
all the derivatives used below are bounded). The functions Fk (t) are bounded. To reduce 
the number of subscripts, we put F, = 6,rP, and we shall seek the inverse operators &r-l. 

Let h, (t), YP,a (1) (a = 1, 2, . . ., N) be the eigenvalues and eigenvectors of the matrix 

U, where h,>h,>O, /J.=--& I>& for all ccf p. We define the vectors 'Fka by means 
of the cofactors of (U-h*): 

We shall assume that 1 ap(t P,>O. We put 

We will seek the solution of Eq.(l.l) in the form 

(1.2) 

where Axa, Bka, WE, WC, &Z is the set of 2Na + 3N unknown functions, denoted below by 

Y (G. Substituting (1.2) into (1.11, we obtain the 2NZ+ 2N equations 

z [ 
W, ARa +&$]=6,,, zv=0 (1.3) 

UknAna= oQA;~ + ALra (A, B), Uk,,Bna= %aB;a $_ &“(Bv - A) (1.4) 

A,a(A, B)= - S;nAna + %%&,a 

Here we introduce the operators 

We choose a further N equations such that Y(t) depends on time only via the parameters, 
i.e., Y(t)=Y(C,C',...). For this, we note that, by (1.41, 



E; = 2y,E, - 2 (RknAkaAna + PC,) 

E, = A,aA,,a + B,aB,a + Et, ~++(A,“~--B,“s) 

pa = R,, [BkaBna -t EZn + m,’ (AkaB,a - A,,aBka)12mnl 
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(4.5) 

It is clear from (1.5) that the requirement for implicit time-dependence can only be 
satisfied in the entire class of admissible functions (including quasistationary functions) 
if Ea = const> 0. The choice of Ea in (1.2) is unimportant. Putting E, = 1, we obtain 

the N equations 

~a=&&~&,~ + ~a (1.6) 

We define the slowness of variation of the parameters and the smallness of the dissipat- 
ive terms by introducing the small parameters El, s2: C + C (it), R + QR, 0 < ci <E,,, i = 1, 2. 
Using algebraic transformations, we can write (1.3), (1.41, (1.6) as 

o, = fz + 6 (o& 6 (oa) = - Y,aA,a (A, B)/((% + 1/G:, YnaAna) (4.7) 

?a = yet’ + 6 (ya)r rd = R,nYy,aYna (1.8) 

6 (ya) = pa + R,, [2Y,auka 1/l - xcz - Y,,aYyka% + %%T~] 

AEa=Yka+ s(A,=), 6(Aka)=a,ca+ Yyka (1/1-&-l) (1.9) 

w, = Y, + S(W,), S(W,j = ++ ( *aya - i+ V-1-% 
- UkYkcL ) (1.10) 

Bka = .l/G (1.11) 

2G;7, ((-$ - yd) Yy,a + Rnjly j”)] + 6 (ha) 

6 (Bka) = g 2 (co,W,& (A,‘) - + YY,ab,BW, + 
R 

[ ( 1/z 6 (W,) ?- 2 6 (Wa)) + W,6 (ma,] g%LR) + 
b,a - Go* [6 (~a) Vet Aja + oaVEj6 ( Aja) - 26 (~a) Y na] 

aka = G:,, [(ma2 - h,) A,a + A,a (A, B)], Gf,, = P;,/Pla 

bka = G& [(o,” - h,) B,a - SEjBja], CJ~ = 

xa = B,aB,a + fzn + ana (2Y,“A,“/Y, + ana) 

where the operator g,afl = YkaGkalVj,,a. Note that up = b,a = 0. We can prove the order 
relations: (A, W, co) - 1, (B, y)- e; (6 (A), 6 (W), 6 (0)) - 9, (6 (B), 6 (y)) - 9, E = .sI, es. 

In short, in Eqs.(l.7):(1.11), written in the form Y = Y, +6(Y), the second terms 
are two orders smaller than the first. Using the procedure of successive approximation, we 
have 

Y(1) = y,, . . . , Y(k+l) = Y, + 6 (Y) I Y=Ytk)’ Y,(t) = y, (C, C) (1.12) 

1 Y(k+*) - Yckj 1 <eak+aMk, k = 1,2. . . , e = max (Q, e,) (1.13) 

where 6 = 0 for Y=A,W,o and 6 =1 for Y = B,y, while the MI, are bounded 
constants for all 0 Q ei < eO. Note that e, and Mk depend on the properties of the func- 
tions C (t) for 0 < t Q T. 

It was assumed above that Y,> 0 (I PIu I> PO> 0). The results are applicable, however, 
in the cases when Y, s 0 for certain a (e.g., U is the direct sum of square matrices of 
lower order). Let Y,s 0. We must then assume in (1.5) that E, = 0. To allow for this, 
it suffices, with ,a=i, to multiply Eqs.tl.91, (1.11) by Y, = const, divide (1.10) by 
the same, and to substitute the limits (.%"'J',, &'Yr, W,/y,) b-o into (1.2), (1.7), (1.8) 

instead of &I, Bkl and W, (the bounded limit YIG,,klIvI~ exists). 
The problem is more difficult if the matrix V has multiple eigenvalues. Let h,=R,= 
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= h, > h, > 0, 1 h, - 

Aka, Bps, w,, a,, & 
are connected by a 
Yyl,U such that 

A* I a b for all a= 1,. . ., N. a# fi > (s& 1). In this case the functions 
with a>,~+1 may be found by the above method, while with CX *< 9 they 
system of s differential equations. We take mutually orthogonal vectors 
Y;P%k~ka = r,&,, , a, f3 = 1, 2, _, s. Then, putting 

ya=y=s-'i"l+...i-',), CO,Ll/jl;, L$G=U, a.<s 

we obtain the first approximation 

With s-2 

where 8,(t) 

oa = exp {(A)” ( b cos (26,) dt} , b _~ r_t- r2 -, a=1,2 

; 
2 

is found from the equations 

6,' + (-Qab sin (ze,) = Y,, 6,{0) z 0. a = 1,2 

(9.14) 

In (1.2) we put Fk = tiklF,. In the general case we have 

zrk (t) = s D,, (t, t’) F, (1’) at’ 
0 

The first column & of the matrix D,j is given in (1.2). The remaining columns 
are similar, except that throughout the subscript 1 has to be replaced by i = 2, 3, . . ., IV. 
In the eigenvectors, only the sign can vary, while IVGz-u', -+Yja. 

To obtain the solution of Eq.(l.l) under arbitrary (bounded) initial conditions, it 
suffices to introduce into the sums over cL in (1.2) the factors Ba = const, and replace 
the zero lower limit in the integrals by la =const. This is equivalent to adding to (1.2) 
the general solution of Eq.(l.l)-with Ph. = 0, which can be written as 

9 K,3 
-[A,"sin(& (t) + Eao) -f- Rka cos(E=(t) + Ecw)I i--J (mp,) e,El 

E, = fwdt* Y, = s y&, K,, gao = const 
0 0 

(1.15). 

With N = 1, we obtain from (1.7)-(l.ll), omitting the subscripts, 

Y = R, and the general solution is written as 

s z L-'F, + Kc-V - sin@(t) -i- Eo) (mop 
L 

j=-‘$v _ e-v 
s 

eV(QF (t’) 
(m$‘* o [m (f’) 0 (t’p 

sin(E(t) - E(2'))dt' 

where o(t) is found by successive approximation from the equation 

B=O,A=Ws I, 

(1.16) 

(1.17) 

(1.18) 

In /2/ the resonance solutions are complex, while the expansion is with respect to e 
(in (1.7)-(1.11) the expansion is with respect to 19). A detailed comparison is therefore 
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difficult. But even in the first approximation, it can be seen that the results are different. 

For instance, with F= #,p> O.N= 1. the particular solution in /l, 2/ in the form (1.2) 

is different, in what W,= 21/%+1/Wfl. The difference is most clearly marked in the 

stationary limit (er-0); the solution (1.16) converges to the exact solution, while in the 
particular solutions of /l, 2/ the extra factor Zs/D/l(~+lfn) appears. 

Let us consider the accuracy and asymptotic converqence of our results. Let X = (rr, . . ., 

XN) be the exact solution of Eq.(l.l), and Xv,) the n-th approximation (i.e., in (1.2), 

Y = Y@l,). Recalling (1.13), the asymptotic convergence can be proved: if T = To/e, and 

c (r)(.t = srt) are 2n times differentiable with respect to r for 0 < z Q To, then, for 

every To, we can find constants M,, EC, such that 1 X - Xc,,) 1 < ean-lM, for all O< e< 

EO (here and throughout, the similar inequalities for I X’ - X&j I are omitted). 
If we narrow down the problem, we can consider the concrete accuracy when the time 

interval is not restricted and it is assumed in essence that there are two distinct parameters 
81, ES. 

We define the operator Lb)-l by substituting into (1.17) o = 6~~") = f/Qn, where q,, 
is given by the sequence 

ql=b,..., qk+l = b + 6,, . . . , ‘I. da 6, = qk dtl qh”‘1 k = 1, . . . , n (1.18’) 

and we assume that b(z) is differentiable a sufficient number of times with respect to r 
for all z> 0. Let 2~) denote the solution of (1.16) for o = WC,,), i.e., L(+r(n) = F, 
where L@) = L - 6, + 6,-, (6, = 0). 

Let 

exist, and for all t> 0 let 

((Y - <y)) dt I< z. = cork, O<m,<mIt)<m <Y> = E,Y,>O 
0 

(1.19) 

Then, given any bounded function a(t)(I a (t)) -< a, < co) and any YZ such that 0 < Omin < a(n), 
we have 

I L&a I < tWe,y,, B = eaT- (m, . whJ1l t>O (1.20) 

(a similar inequality holds for ) dL&zldl I). 

Put a, = 6, - 6*-,. If m(k)> %ln>O for k Q n, then p max I a, 1 = Elanb,,, where 
the b, are negative for all O< ei < eo, i = 1,2. 

Theorem 1. Let the function F 0) be bounded for all t>o, let Conditions (1.19) 
hold, and for at least one n = 1,2,... , let 

e?'b,/e,~,<s,<1, w~~c,>cw~>O, k=l,...,n (1.21) 

Then, the exact solution of (1.1) with N = i is bounded, and for all n that satisfy 
(1.21) we have 

I %) - 2 I < d”b, max I ZOO Il@,y, - ei”b,) 

if 2~~) (0) = I (0), x(~)’ (0) = x’ (0). 

Proof. By (1.20), x(n) is bounded. For x we have 

(1.22) 

x = X@) - L&&x = r, (- q,‘)%)k qn) 
k=O 

whence, using (1.20) and (1.21), we see that z(t) is bounded, i.e., we obtain (1.22). 
The operator L for which (1.19) and (1.21) hold, will be called bounded, and when 

separating the undamped solutions in (1.17) we extend the lower limit of integration to -OO. 
Notice that, with F = exp (W, I P - 0 I > A, > w,, 
we obtain the estimate 

(1.17) can be integrated by parts, and 

(1.23) 

Theorem 1 demonstrates the different effect of the parameters z1 and e, on the 
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accuracy of the approximate solutions. If e,4e,, the first approximations may be neaning- 
less (the error is comparable to rnaxI,~& Since the a, contain derivatives up to order Zn, 
we can, in general, except for b, a factorial growth: b,-(2n)! for 
,-1/e, 

n>>l, i.e.,min(el%,,) - 
for n -V& , and eLanb,, 2 1 for n >e/% (it is assumed that wmin-1,y, - I, ~~41). 

In this case the best approximations are connected with the values n - '.',e,, while if I‘ > 
e/z&z,, the ztn) may have no meaning. Then, for r(t) to be bounded, 

e#el>2 as 
it suffices to require 

that (al, a*) 40. 
In the multidimensional case, given suitable constraints, a theorem similar to Theorem 

1 holds. Here, in the inequalities of the type (1.21); (1.22) we have O<e,y,= mincy,) (a= 1, 

. I ., N)+ while 

where bnk are bounded for all 0 < ai <Eg. 
The proof is based on the fact that the multidimensional analogue of 

the exact operator by the operator 2" K 
( &+ %)' where the matrices 

bounded for all 0 Q ej <Ba, i = 1, 2, if C (7) (7 = e,t > 0) are differentiable 

2. Spectral ana’lysis. Let the parameters C(t) vary with frequency 
F, =exp (ipt), p> 0. We introduce functions 

* t 

L(,, differs from 

%)' u(n) are 

2n times. 

Q< min tia, and let 

Putting min (Ya>> 0, we obtain from (1.2) the spectral resolution of the undamped 
oscillations 

Ix = ,5_ exP [i (P + m t1 z (AT, n (PI + r:, -74 (-- PII 

For IYalGQ, it can be assumed that 1% I< 1. The functions (pa N */a, i.e., 
for sufficiently small El the coefficients S,,= can be found by the stationary phase method 

131. Note also that 

If Yao%Q the number of significant terms in the sums (2.2) is less, and in 

particular, 

fi< j(%,)a S~~((8~")S*"(z,)/(2iY,,), %n =(%co + & 

In the one-dimensional system with m, = 1 and y = con&> 0, we have 

(2.3) 

hk(Pf=O~-l-i7r”P, o,=<0>+kQ 

S,=~,(w-‘,~erp[j(w--o)dt]) 
0 
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The quantities $+) = (max w - o&/Q, p(-) = (0, - min co)/!2 characterize the number of 

significant harmonics in (2.3): S,-+O for n> )A(+(+, and n < -$'. It can be assumed 

without loss of generality that I+(+)N ~(-1 = p (u is sometimes called the excitation h3Vel). 

If l~--w~l>@ or Q<y, we obtain from (2.3) the stationary approximation x =(02 + 

(y + ip)2)%'@. Thus, analysis of the resonant domain IF-- o0 16 $2 with y<$J is 

more important. If r< %li.% we have for the function E(p)- <]a: j2> (in the station- 

ary case this is the amplitude-frequency response) the relation 

It can be seen that the maxima of E(p) are linked with the values p = CO,, = <o)f rd. 
The frequencies %a(ln I< P) may be called resonant. Not all the resonances appear: if 

s, El( 0 for some Ic(lk I< )A), we obtain instead of a maximum for p = ok an extra deeper 

minimum. When IL>ir the curve E (P) is nearer the boundary of the resonant domain at 
the tov than at the middle of the domain. If n>zu, there is a notable similarity between 
the spectral amplitudes 

_ 
and the maxima at the resonant frequencies. In fact 

EC,, = E (O,b) cx @, 1% 12/($“), fnk = fn-k 6%) = +$- 

lf¶l”i”= 

Here, fnk is the complex amplitude of the harmonic exp (i(r)"t) for p = ok (I k [a y), 
so that, by calculating (or measuring experimentally) the amplitudes Ijnk I for some 1 k I< 

CL, we can also estimate jfnj 1 for j# k, and also the behaviour of the curve E (P) 
(the size of the maxima, and the position of the extra minima, etc.). 

The forced oscillations in multidimensional systems are made up of one-dimensional 
oscillations, to which correspond the natural frequencies w, and the coefficients of 
friction ?a. If all the parameters vary over a small range with the same frequency 9, 
the quantities 

<ya>, o,,=&+.&> +- A, S,"(o;'*), p,= max [ma-- O,$ pi2 

define the main properties of the spectral amplitudes of these oscillations. Every mean 
square characteristic E (p) = gR,t~s~n)(gk, = mh- = coast) in the ranges of p where 1 po’dE,ldp I’d 
* < 1 fE, (Pf is the stationary analogueof E (P)) is virtually equal to E,(p)(lE - E,/,-xE& 
In the resonance domains (\p- u~~I~~,Q) however, E(P) is qualitatively different from 
E, (~1, and we have 

if &>l, IP-eOaoIdP& l~,--Dpol>(Pa-tP'g)Q. B=+a. 

The above spectral analysis gives an idea of how the properties of the forced oscillations 
depend on the functions Y = (A,R,W,o, hf. The most important characteristics are the 
functions 

(phase oscillations) and the means (Y). 

3. Non-linear disturbance. We shall study the non-linear oscillations by using the 
above method of partial linearization. We shall confine ourselves to the one-dimensional 
case; under suitable conditions, our scheme can be easily extended to the cases 

The non-linear generalization of Eq.Cl.1) with N = n, A 1 
N> 2. 

is 

Lz= $+2ey(r) 
( 

~+u(T))Z=F(t)+BQ&,z.,t), %=a (3-i) 

where Q (2, x', t) is infinitely differentiable with respect to x and X’ (in particular, it 
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may be polynomial), and Q(0, 0, t) = 0. We note at one that, if _xI is a bounded solution of 
Eq.(3.1), then in general x=x1 + Y, where Y(f) is given by 

LY = eV (.'% Y), P' (rr, Y) = Q (x1 + y, 21’ -t y’, t) - Q (r,, 11’. t) (3.2) 

We will first introduce some notation. Let o(t) be an approximation, given in (1.18). 
We assume that O< aye =(y>e< %,r, < w < amar. Let g be the frequency interval (Wmin - 
A\o, omax + A& where A, = const satisfies the conditions eye< A, < urnin. Let G be the 
set of infinitely differentiable functions which can be expanded for t 12 0 in absolutely 

convergent series of the type ZAk 00s (O,l+ (Pkb If I@, iEg in these series, then G,c G, 

while if if&j < A,, then G,C G. For a function g(t)= G we define the operations Hq, 

kj:HqCEG,, {Q}EG--GG,,q=Hq+(q) (i.e., Hq and fq1 are the resonant and non-resonant 
parts of p (1)). We also introduce H’q and {q)' = (1 - N')q such that Lw'qE G,, L {n)'~ 
G - G,. 

A "smooth" division of the frequency spectrum is often more convenient: we preserve in 
Hq and (4) the harmonics of rapidly decreasing amplitude, whose frequencies go beyond the 

indicated limits. In such cases we are usually dealing with functions of the type xiBi, cos 

f&$ +$k), where @k, $k) e Go (the class of slowly varying functions G, can also be 
smoothed). We can then define operators H,, which leave unchanged the harmonics 
frequencies close to n (a>: H,q = B cos (n (w>t + I$), (B, 9)~ G, ; sometimes, H' = 

In (3.1) let (y, U)E G,, (F(~),Q(~))E G for all t>O. We introduce the 

frequency linearization as follows: if LYE GI and z WE G, then 

HV (z, Y) = UY i 2rY.7 (u, r)~ G,, zz =: u (z, Y), r = r (z, Y) 

In general, 

HV =~Ak~os&t+1C’k)r Y=~YLCOS(@~~+(PX), 

P = 8; yky,“k co3 [t@, - 0,) t + (Pm - (Pk], (jk, 0,) c= g 

with 
I;--"fl N II,. 
idea of 

(3.3) 

(3.4) 

If "smooth" separation is possible and Y = aces (pt + cp), ps (CO), (a, 'p) ~7 G,, a > a,> 0 
(we then have in (3.4) p = a(p + cp')), then, putting 

v, = +-(v+B), v,= +(V--), B=Q(z+y,z‘,t)-Qfz,z'+y',t) 

(Ho + H,) Vi = ai + bi cos (2pt + 2~ + cpi), h bi, vi) E Go, i = I,2 

and observing that V, -+ 8Q (z, z’, t)/Bz, Vz --f aQ (z, z’, t)ich’ as Y--,0, we have 

(3.5) 

Now, putting F = EF~ -!- F,, EF~ = HF, F, = {F}, the following scheme for analysing (3.1) 
can be proposed: 

20 = 0, %l= Y, + &a, y,=H'x,, n=i,2,... 

zti = L-' (Fs + s (Q (ZW, &, t)}); y, = eLi?P,, 

J’n=F,+HQ(z,,z,‘,t), L,=L-22er,-+un 

rn = r (h L&l)> %I = u (z,, l&l) 

(3.6) 

When proving this procedure (see below), inequalities of the type lg I< const simul- 

taneom:y imply (1 p 1 + 1 q’])< const, if q(l)= G. 
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The operators L,L,, . . ., will be said to be bounded, and we shall write L<I, L, < 1, 

. . . . if, given any g (t)~ G, there are constants ~0, K,> K, such that 

IL-‘{q}l< K,maxlqj, el L-‘Hq I< K,maxlql,...,O< E<% (3.7) 

In particular, recalling (1.20) and (1.23), we see that (1.19) and (1.21) can serve as 
criteria for boundedness. 

In (3.6), (u,, m) = C, = C (z,, y,), .!/?I = Y (CY> zfl, P,). In the general case, these 
functional equations lead to a set of solutions, l.e., c, + c,' = 0(i) (z,, P,), where CD(l), 
W), . . , is a set of functionals, the number of which depends on the type of non-linearity 
Henceforth, we shall understand by z, any of the relevant sequences +*(I), z,(2), . . 

Before starting our main theorem, we consider the equation 

Ly = EHV (z, y) + Ek+lp (t) + L (z, y)y = Ek"$J, 2 G G, '3 E (3.8) 

G, (k = 1, 2, . .) 

We shall write L(z)< I" (k = 1,2,.. .) if, given any m (t) E G,, there exists E0 > 0 
such that L(z, E'cp)< I for E< E, (i.e., the operator L(z) is bounded with a "margin"). 
In the case of (3.8), this means that, among the functionals o(i) there is one CD(l) (2, P), 
continuous in the neighbourhood I P I < 8: Inax 14 I, such that I @(I) (z, ekq) ( -C ,k const. 
Hence we have 

Lenrma. If L (2) < I”, then among the bounded solutions of (3.8) there is y (t) such 
that / y I < ekM,, where M, = const, O,< e< Ed. 

WC can now prove the asymptotic convergence of the procedure (3.6). 

Theorem 2. If (F,, F,)E G for o,< &CEO, then, for all the O< e<e, for which 
L, < I, L (zk) < I” (k = 1, 2, . . ., n), we can find constants M,< 00 such that, among the 
bounded solutions of (3.1) there exists x(t) such that j 6x, I = 1 +-I, 1 <en&Z,. 

Proof. For 62, = {x}' - zk, by, = H’x - y, we have 

L6zl = & {Q (.? x', t)}, . ., L&+1 = E {v (+k, 62x)) (3.9) 

LAY, = &HV (+, 6y,J - EHV (5, -6~~)~ k = 1, . . ., n (3.10) 

Since Q (z, z', t) is differentiable, we have the Lipschitz condition 1 V(n, ?I)/< I b 1 Const. 
Hence, successively analysing (3.9) and (3.10) ((3.9) for 62, 4 (3.10), for 6y,+(3.9), for 
62, + etc.), we obtain from (3.9) in the light of (3.71, \~z~I<E~M~‘, and from (3.10) we 
have by the lemma, 1 6yk I < ELM< (Mk’, M,” arc+ constants). As a result, 

161, I<ML~', k =l,...,n, Mk =const 

A few words about Eq.(3.2), where we take L<I and seek y=G. If Y = {Yl’ = 2, then 
1 z I < e I 21 COLE4 and z=o for sufficiently small e. Hence tl'y=y, ~$0 if yf0. Here, 

.L b,Yl) Yl = egg (0, B E G and (3.2) has non-trivial bounded solutions only when L (z,y,) <I as 
e - 0. For (3.2) we can propose a scheme similar to (3.6), and obtain in the first approxi- 
mation L (2. yl) y1 = 0. Hence the wanted solutions clearly arise in the parameter domains 
which separate the cases of increasing and damped solutions of the equation L(z,y,)y,=o. These 
domains can be defined by the relation (CY - r (& r/ID) - + 0 I e - 0, which will obviously not 
hold for any types of functions z 0), Q (2, +', 0. 

For instance, we can put F-+F+acp(t) in (3.1) and choose q(i)~C in such a way that 
the relation is not satisfied. Passing to the limit as a-0 in the results of (3.6), an 
increase in the number of functionals a(i) must, in general, be expected. This procedure 
allows the scheme (3.6) to be used for seeking the solutions (3.2). 

Functions of the class G have been considered above, so that the time interval has not 
been restricted. 

4 = qz-‘(t) e G, 
If we take 0 < t < To/e, ‘c = et, all our results apply for functions 

which are infinitely differentiable with respect to z 
P (t, 

for all O<z,< T,,. 
Now consider in more detail the one-dimensional system with 

O<y = cons& 0 = 1 + z in8~nerp(inRt), p, = p_, = con& 
n=M 

mino(t)=otin>O, O<a@o,, 

Q = P, F = eF, cos pt, p E g 
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In (3.6) the first approximation gives 

S, - (DfL (lo-“a exp (L (q - VI))), h, (a) = 1 + kB + icy - n 

(3.11) 

(3.12) 

Let the parameters vary over a small range: lo-l/.&l (in practice it suffices that 
10 - 1 j < 0.3). Introducing for the set @ = (&), where & = &.k = co&, k = +1, _)12,. . . the 
notation 

we obtain fn = f" (P + "0. P - x) and the system of equations for x0.(x& 

3 
Xe=~E&(P!-W.&I-X), 

3ei 
Xk=-4kI)EX(P+Xo,P--X) (3.13) 

When i-J > ey we have the order relations ffn j <(Z~J)-~, 1 x, 1 g 3&F,V(32y*) = a, / xg 1 < eyci/(k9)*, 
where we take ael. Obviously, it is only when y<3eaF,,V(32@) that there is any point in 
taking account of XX with Ikl>l. If cry/Q=<1 and 0 = 1 Jr np, COS Bt, t%>)l, then, assum- 

3e 
ing that xk= 0 for 1 k1>2, we obtain S, = exp(---i+,)Jn(pl -- XI), $I =w Im&(pi- x0, pl-%,) (J, are 

Bessel functions), and the system of equations for x0,%,: 

Notice that (3.13) and (3.14) are in essence a parametric specification of the functions 
X, = +(P, P), n = 0, +l,. . ., P = @kf* 

If the parameters can vary over a fairly wide range and max /o- 1 l>Q, the stationary 
phase method can be used to solve the functional Eq.(3.12). We shall assume that 0 (t) is 
an even function, with one extremum in the half-period n/Q. Assume that o(t)=Y gives t= 

ktp, 0 < tp <n/Q, and that w = o (tp) =#=(I. Then, if Iwl>@ (i.e., minw<p<maxw), we 
obtain 

T=2n/Q, y=l--p--x0 

rl V) = 
D1exp@yTn), (nT - '&J < t < @T -t $J 

D,snp(2eyTn), (nT + fs) <t< (nT + T -$,) 
n.==O,*l,..., D1 zch(ey(Zt,,- T))+ cos(Y(2tp- T)+2$--228) 

D*= c"~kch(2ey$)+eos(2Ytp + 2tp-28)1 

Here, x0, B are given by the system of equations 

tP 
T-Q 

bI s+ 
s 

q dt, 
D, r b,= 7 1 q dt, q = 

exp (- Zeyt) 
69 

-t” <P 



439 

To sum up,we have demonstratedthe cases when we can pass from the functional equations 
for Cl = (Ul, r& to a system of ordinary (not differential) equations with only a few unknowns. 
It can be said in general that the passage can be made if, in the expansion e, = ZAkcos (8kf-l-$d, 

the condition Idii\>ee, is satisfied by only a few harmonics. The stationary-phase method 

also simplifies the functional problem. Given these possibilities, our scheme is preferable 

to the methods described in /I/, in which the results are stated as first-order non-linear 
equations for the amplitudes and phases. 
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THE CONDITION FOR SIGN-DEFINITENESS OF INTEGRAL QUADRATIC FORMS 
AND THE STABILITY OF DISTRIBUTED-PARAHETER SYSTEMS" 

F.D. BAIRAMOV and T.K. SIRAZETDINOV 

The stability of distributed-parameter systems described by linear 
partial differential equations is investigated by reducing the original 
equations by a change of variables to a system of first-order equations 
in time and in spatial coordinates. The Lyapunov functions are 
constructed in the form of single integral forms. New necessary and 
sufficient conditions for the sign-definiteness of these forms are 
obtained. These conditions, unlike the Sylvester criterion, do not 
require the calculation of determinants. The check for sign- 
definiteness is made using recurrence relationships and is a 
generalization of the results obtained in /I/. 

The proposed criteria are applied to derive sufficient conditions 
for the stability of distributed-parameter linear systems. The 
construction of functionals for the one-dimensional second-order linear 
hyperbolic equation is considered in more detail. As an example, we 
examine the stability of the torsional oscillations of an aircraft wing. 

I. Consider a system of first-order linear partial differential equations of the form 

where t fz I = (0, 00)) x = (q, x,, . . .( z,)T E xc E' is a vector of spatial coordinates, 
cp (x, 1) 

rp= 
is the n-dimensional vector of phase functions, * =*(x, t) is the m-dimensional 

vector of phase functions whose derivative with respect to.time does not occur in the system 
(1.11, (1.21, 4 (xx), BR (x), C, fx), and Db (x) (k = 0, 1, . . .,s) are matrices whose elements 
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